CTF categories

General Skills

- 1) Linux / Command Line
 - a) Students will understand the uses of the command line.
 - b) Students will be able to ssh to a server.
 - c) Students will be able utilize nc to connect to a network service.
 - d) Students will be able to utilize the following commands to change/create/delete files/directories:
 - i) pwd
 - ii) cd
 - iii) rm
 - iv) cp
 - v) rm
 - vi) Mkdir
 - e) Students will be able to run C executables.
 - f) Students will be able to run Python...
 - i) ... scripts in the command line
 - ii) ... scripts in a file
 - g) Students will be able to open and edit files utilizing the following commands:
 - i) cat
 - ii) more
 - iii) Shell redirection / shell piping
 - h) Students will be able to utilize other commands in command line including:
 - i) file
 - ii) scp
 - iii) whoami
 - i) Students will be able make and edit files using a command line text editor (such as nano).
 - j) Interfacing with the Command Line
 - i) Students will understand the use of:
 (1) stdin / stdout / stderr
 - ii) Students will be able to utilize pipes.
 - iii) Students will be able to redirect stdin and stdout to be captured by other commands.
 - iv) Students will learn how to use man pages.
 - k) Students will be able to utilize the following commands for searching and manipulating files and directories:
 - i) find
 - ii) grep
 - iii) strings

- I) Students will be able to write basic bash scripts to interact with the command line.
- m) Students will be able to understand the difference between relative and absolute paths.
- n) Students will be able to interact with environment variables.
- o) Students will be able to make and view hidden files.
- 2) Students will understand how data is represented on a computer:
 - a) Different number systems (Binary, Octal, Base-64, Hexadecimal)
 - b) ASCII (ANSI) text
 - c) 2s Complement numbers
 - d) Little/Big Endian

Web

- 1) Students will be able to view and understand the page source of a web page.
 - a) Students will be able to identify and understand basic javascript code.
 - i) Students will be able to identify static comparisons to values in a web page.
- 2) Students will understand HTTP as it is used today, and the two main methods of transmitting user data:
 - a) Get
 - b) Post
- 3) Students will be able to understand the use of cookies, including:
 - a) editing/modifying
 - b) User agent
- 4) Students will understand the need for the use of HTTPS.
- 5) Students will understand the difference between clientside and server side processing.
 - a) Students will understand the basic functionality of PHP.
- 6) SQL/NoSQL
 - a) Students will be able to perform basic SQL queries.
 - b) Students will be able to perform basic SQL injection attacks.
 - c) Students will be able to perform blind SQL injection attacks.
- 7) Students will understand how to gain Remote Code Execution on systems.
- 8) Students will be able to modify/add HTTP headers to outgoing requests
 - a) GET
 - b) POST

Forensics

- 1) Students will be able to perform file carving.
 - a) Students will understand how headers and footers in files work.
 - b) Students will understand how magic numbers function.
- 2) Students will understand the deleting process and recover deleted files.
- 3) Students will be able to analyze pcaps of captured data.
- 4) Students will be able to extract metadata from a file.
- 5) Students will understand the rationale of steganography.
 - a) Students will be able to use specific programs to extract data.
 - b) Students will be able to hide/extract using the least significant bit.
- 6) Students will be able to look through logs to find malicious activities.

Cryptography

- 1) Students will understand the issue with reusing a one-time pad.
- 2) Students will be able to apply known and chosen plaintext attacks on a ciphertext.
- 3) Students will understand how to leverage flaws in usage of pseudo-random number generators.
- 4) Students will be able to apply dictionary attacks to cracking passwords.
- 5) Students will be able to brute force a key with/without mistakes in implementation.
 - a) Students will understand the role of entropy in modern cryptography.
 - b) Students will be able to use frequency analysis to defeat some crypto systems.
- 6) Students will be able to break the following historical ciphers:
 - a) Caesar Cipher
 - b) Vigenere Cipher
- 7) Students will be introduced to the following crypto primitives:
 - a) Symmetric Key
 - b) Public Key Crypto (Asymmetric Key)
 - c) Pseudo Random Number Generator
- 8) Students will be able to break some block ciphers including:
 - a) CBC
 - b) ECB
 - i) Students will be able to apply padding to a message.
 - ii) Students will be able to attack using oracle attacks.
- 9) Students will be able to utilize the following math rules as they apply to cryptography:
 - a) Factoring Large Numbers
 - b) Mod prime arithmetic
- 10) RSA
 - a) Students will be able to utilize the following basic attacks on RSA:
 - i) primes too small
 - ii) wrong exponent released
 - iii) n product of more than 2 primes
 - iv) Students will be able to utilize e too small

Binaries

- 1) Students will be able to read C programs.
- 2) Students will understand built-in C types (e.g. word, double-word).
- 3) Students will be able to understand assembly, and its relationship to given the C code.
- 4) Students will be able to write basic python programs/script.
- 5) Students will understand file formats for binaries.
- 6) Students will learn about registers in assembly.
- 7) Students will be able to understand basic assembly operations
 - a) Arithmetic Operations
 - b) Control Flow Operations
 - c) Logic Operations
- 8) Students will understand the difference between Big Endian and Little Endian.
- 9) Students will learn about the memory/section layout of a Binary.
- 10) Students will understand the layout of the stack in 32-bit programs.
- 11) Students will understand the x86/x86-64 calling conventions.
- 12) Students will understand how to locate important information in a binary
 - a) function symbols
 - b) Strings
 - c) Global Offset Table
 - d) Process Linkage Table

Reversing

- 1) Students will learn the basics of using a disassembler.
- 2) Students will learn the basics of using a debugger, including:
 - a) Breakpointing
 - b) Reading/Writing memory
- 3) Students will learn about optimizing code through dynamic programming (e.g. memoization)
- 4) Students will learn how to patch a binary/file.
 - a) Patching bytes
 - b) Recompiling
- 5) Students will gain experience working with foreign architecture assembly.
- 6) Students will understand how to find/generate a solution given a set of constraints.

Binary Exploitation

- 1) Students will learn how to debug a program using gdb.
 - a) Running
 - b) Stepping
- 2) Students will learn how to exploit buffer overflow vulnerabilities.
 - a) Stack Buffer Overflow
 - b) Heap Buffer Overflow
- 3) Students will learn how to control program execution.
 - a) Overwriting return address (+ arguments)
 - b) Overwriting GOT
 - c) Use syscall to get a shell (execve)
 - d) Use syscall to execute arbitrary shellcode (mprotect/mmap)
 - e) Sigreturn
 - f) Writing shellcode given buffer/character constraints
- 4) Students will learn about format string attacks and how to avoid them.
 - a) Understand the risk of a user inputted format string
 - b) Leak addresses with a format string
 - c) Write arbitrary data to arbitrary addresses using %n
- 5) Students will learn about signed/unsigned overflow vulnerabilities.
- 6) Students will learn about techniques to squander exploitation and how to bypass them
 - a) Canaries
 - i) Spot where canaries are
 - ii) Leak canary from stack/heap
 - b) Stack randomization ASLR
 - i) Nop sled
 - ii) Return to libc
 - iii) Partial address overwrite
 - iv) Brute-force (32-bit)
 - c) NX-bit
 - i) Retn-libc
 - ii) ROP
 - iii) Control Flow Integrity (CFI)
 - d) Full Stack RELRO (Relocation Read-Only)
 - i) malloc hook, printf hook
 - ii) One gadget
- 7) Students will understand the basics of the C memory allocator (glibc malloc).
 - a) Dangling pointer/Use after free
 - b) Double-free
- 8) Students will learn how to manipulate data to leak addresses and write to memory.
- 9) Students will understand the Memory layout of Linux x86-64 userspace programs
 - a) code/data/bss
 - b) Heap
 - c) Stack

10) Students will gain familiarity with the C standard libraryd.